

4 October 2022 640.30541-L02-v1.0-20221004.docx

Erilyan 1/27 Hotham Parade Artarmon NSW 2064

Attention: Florian Hasche

Dear Florian

Limited Soil Contamination Assessment Report Albury Wodonga Private Hospital 1125 Pemberton Street, West Albury NSW 2640

1 Introduction

Erilyan ("the client") engaged SLR consulting Australia Pty Ltd ("SLR") to undertake a limited soil contamination assessment in the footprint of proposed development ("the assessment area") at the Albury Wodonga Private Hospital located at 1125 Pemberton Street, West Albury NSW. SLR understands that the proposed development includes new buildings for rehabilitation purposes, including two gyms, a pool, consultation rooms and a reception/lounge.

The objective of this work was to assess for contamination in shallow soil across the assessment area to assist with soil management during the proposed development works. Under direction from the Client, the assessment was limited to the top 0.15 m of the soil profile.

1.1 Scope of works

The scope of works undertaken to meet the aforementioned objective is summarised in Table 1.

Table 1Scope of Works Summary.

Tasks	Works Completed									
Site Inspection										
Site Inspection	 Inspected the site setting including topography and soil types. 									
	 Assessed the site for features and/or infrastructure which indicate the conducting of potentially contaminating activities or storage of hazardous materials currently or historically. 									
	 Assessed the surrounding area for other potential sources of contamination. 									
Limited Soil Conta	amination Investigation									
Fieldwork Preparation	 Prepared a work plan for the site with pre-defined sample locations, with opportunity to modify the scope based on the site inspection. 									
	Prepared field forms.									
	• Prepared a safe work method statement (SWMS) for all tasks being undertaken in the field.									

Tasks	Works Completed									
	 Conducted a 'Dial Before You Dig' (DBYD) enquiry to identify for underground services or assets and review the provided service plans. 									
Intrusive Investigation	 Undertook soil sampling at ten locations to a maximum depth of 0.15 m. Tested soil samples for either a broad range of analytes or the contaminants of potential concern (CoPC) at a NATA accredited laboratory. 									
Report Preparation										
Prepared this report, detailing the results of the soil investigation with consideration of the NSW Waste Classification Guidelines (EPA NSW, 2014).										

2 Site Description

The site is situated at 1125 Pemberton Street, West Albury NSW and the proposed development will include areas inside and outside existing buildings in the north-west of the hospital. It is understood that the slab within existing buildings that are being demolished and re-developed (patient rooms) is to remain. Therefore, soil excavation and management, and the assessment area, is limited to existing outdoor areas within the development footprint, as shown in red in **Figure 1** below. It is estimated that the assessment area is approximately 1,600 m².

Figure 1 Assessment Area Boundary in Red (Source: Nearmap 2022)

2.1 Geological Setting

Based on the review of 1:50,000 Albury Geological Map (Index 8225-I Zone 55) produced by Geological Survey of Victoria, the site is underlain by the following geological units:

- Quaternary aged Coonambidgal Formation consisting of swamp deposits of grey coloured clays, sands and gravels.
- Pleistocene aged Shepparton Formation consisting of red-brown clay, silt, sands and gravel.
- Upper Ordovician aged Barnawartha Gneissic Granodiorite consisting of fine to medium grained biotite sillimanite schist.

3 Site Inspection

An experienced SLR Environmental Engineer conducted an inspection of the site on 14 September 2022 and the main observations made can be summarised by:

- A mound was identified in the north-east of the assessment area which indicated the potential for imported fill in this area.
- No other evidence of potentially contaminating activities was identified (i.e., activities or infrastructure).

3.1 Potential Contamination Sources and Contaminants of Concern

Based on the site inspection and current site use, the main potential source of contamination was considered to be the importation of fill during previous site developments. The main contaminants of concern commonly associated with imported fill are metals and polycyclic aromatic hydrocarbons (PAH).

4 Soil Investigation

The methodology and results of the soil investigation are detailed in the following sections.

4.1 Soil Sampling Methodology

The scope of method of soil sampling fieldwork is summarised in **Table 2** below.

Table 2Soil Sampling Scope and Methodology

Activity	Details
Date of Field Activity	14 September 2022
Number of Locations	10 soil bore locations
Sampling Locations and Target Depths	The sample location plan is shown in Figure 1, Appendix A. Ten sample locations were extended to a maximum depth of 0.15 m BGL. Given that no point sources of contamination were identified, the sample locations were placed in an approximate grid pattern across the assessment area, with three samples placed in the existing mound area in the north-east of the assessment area.
Service Location	Request and review of utility plans from the Dial Before You Dig service was conducted prior to sampling works.

Activity	Details
Sampling method	Sample locations were advanced with hand tools with samples collected directly from the ground or the spade. Two samples, one at the surface and one at 0.15 m depth, were collected at each location.
In-situ Survey	Soil samples were field screened using a calibrated Photo Ionisation Detector (PID) and noting any odours and any other olfactory signs of contamination.
Soil Logging	The records of the soils encountered, including depths and any relevant observations, were recorded on soil sample field sheets, provided in Appendix C.
Sample Collection and Storage	Soil samples were placed into laboratory supplied containers that are labelled with an indelible marker pen and placed immediately in an ice chilled esky.
QA/QC Testing	One blind replicate and one split for every 20 primary samples was collected.
Field Personnel	The fieldwork was undertaken by an experienced environmental engineer in accordance with the agreed scope of work and using methods set out in the SLR sampling procedures
Sample Preservation and Transport	Samples were stored on ice, in an esky while on-site and in transit to the laboratory under Chain of Custody documentation.
Borehole Abandonment	Sample locations were abandoned and backfilled with soil cuttings produced, then levelled with the ground.
Laboratories Used	Samples were submitted to Envirolab Services Pty Ltd (Envirolab) which is National Association of Testing Authorities (NATA) accredited for the analyses requested.

4.2 Adopted Assessment Criteria

Given that the objective of the assessment is to assist with decisions on the management of soil during the proposed development, which may include off-site disposal of soil, assessing results of the soil sampling with respect to waste classification guidelines was considered appropriate.

The following classes of waste are defined in clause 49 of Schedule 1 of the Protection of the Environment Operations Act 1997 (POEO Act):

- Special waste
- Liquid waste
- Hazardous waste
- Restricted solid waste
- General solid waste (putrescible)
- General solid waste (non-putrescible).

Waste Classification Guidelines Part 1: Classifying waste (EPA NSW, 2014) provides a six-step process for determining which of the above classifications apply to a waste. Table 1 within *Step 5: Determining a waste's classification using chemical assessment* provides maximum contaminant thresholds for General Solid Waste and Restricted Solid Waste for comparison of contaminant concentrations. Results of the soil assessment have been compared to these maximum contaminant thresholds.

4.3 Soil Profile

The general soil conditions observed across the site during the soil sampling program consisted of brown clayey sand and sandy clay with varying amounts of root matter and crushed rock. Soil sample descriptions are provided in **Appendix C**.

4.3.1 Field observations

In addition to the soil descriptions detailed above, PID readings on all soil samples were reported below 5 ppm, indicating low potential for the presence of volatile contaminants. In addition, no odours were observed during sampling, also indicating low potential for the presence of volatile contaminants.

Asbestos, or asbestos containing material was not observed during the field investigation.

4.4 Laboratory Schedule and Results

The following was considered when selecting the laboratory schedule:

- All samples, with the exception of one sample, were analysed for the main contaminants of concern comprising PAH and metals.
- One sample was analysed for a screen of analytes, to assess for the presence any other commonly identified contaminants within fill.
- **Table 3** presents a summary of the individual sample results in consideration of contaminant thresholds (CT) in Table 1 within the EPA Waste Classification Guidelines (EPA, 2014). Tabulated analytical results are provided in **Table 1**, **Appendix B**. NATA accredited laboratory reports are provided in **Appendix D**.

Bore ocation	Sample Depth (m BGL)	Analysis	Result in comparison to Table 1 of Waste Classification Guidelines
SB01	0.05	PAH and metals	Below CT1 Maximum Value
SB02	0.05	Screen of Analytes ¹	Below CT1 Maximum Value
SB03	0.15	PAH and metals	Below CT1 Maximum Value
SB04	0.05	PAH and metals	Below CT1 Maximum Value
SB05	0.15	PAH and metals	Below CT1 Maximum Value
SB06	0.05	PAH and metals	Below CT1 Maximum Value
SB07	0.15	PAH and metals	Below CT1 Maximum Value
SB08	0.05	PAH and metals	Below CT1 Maximum Value
SB09	0.15	PAH and metals	Below CT1 Maximum Value
SB10	0.05	PAH and metals	Below CT1 Maximum Value

Table 3 Summary of Analytical Results

 Screen of Analytes: Total recoverable hydrocarbons (TRH), Benzene, Toluene, Ethylbenzene, Xylene, Naphthalene (BTEXN), Monocyclic Aromatic Hydrocarbons (MAH), Polycyclic Aromatic Hydrocarbons (PAH), phenols, Chlorinated Hydrocarbons (CHC), Organochlorine Pesticides (OCP), Organophosphorus pesticides (OPP), Halogenated benzenes, Polychlorinated Biphenyls (PCB) and heavy metals

Given that all results were below CT1 threshold limit, calculation of the 95% UCL_{AVERAGE} was not considered required. No toxicity characteristics leaching procedure (TCLP) testing was undertaken.

4.5 Quality Assurance/ Quality Control (QA/QC)

The completeness, representativeness, comparability, accuracy and precision requirements assessment and a detailed review is included in **Appendix B**. Overall, the data is considered to be of a suitable quality of the purpose of this investigation.

5 Conclusion

Based on the laboratory results, soil up to 0.15 m depth within the assessment area comprises a clayey sand or sandy clay fill, with concentrations of contaminants below the CT1 (general solid waste) maximum values provided within Table 1 of the NSW EPA Waste Classification Guidelines Part 1: Classifying Waste.

6 Closure

We trust this letter meets your requirements; however, should you have any queries, please do not hesitate to contact the undersigned.

Yours sincerely,

SNEHA BHATTACHAN Senior Environmental Consultant

Checked/ Authorised by: PJB

7 Limitations

The following information will assist in understanding the uncertainties relating to the interpretation of the data obtained during this investigation and the recommendations presented in the report and help with assessment and interpretation of the report. The limitations here are in addition to those listed in the body of the report.

SLR assumes no responsibility for the quality or accuracy of data obtained from external sources, or for occurrences outside the scope of works defined in this report.

All work conducted, and reports produced by SLR are prepared for a particular Client's objective and are based on a specific scope, conditions and limitations, as agreed upon between SLR and the Client. Information and/or report(s) prepared by SLR may therefore not be suitable for any use other than the intended objective.

Before passing on to a third party any information and/or report(s) prepared by SLR, the Client is to inform fully the third party of the objective and scope, and all limitations and conditions, including any other relevant information which applies to the information and/or report(s) prepared by SLR.

It is the responsibility of third parties to investigate fully to their satisfaction if any information and/or report(s) prepared by SLR, is suitable for a specific objective.

Services were conducted in a conscientious and professional manner. The nature of the task, however, and the likely disproportion between any damage or loss which might arise from the work and any report prepared as a result and the cost of our services is such that SLR cannot guarantee that all issues of concern/contamination have been identified.

The report(s) and/or information produced by SLR should not be reproduced and/or presented/reviewed except in full.

Appendix A

Figures

T: +61 2 9427 8100 www.slrconsulting.com

The content contained within this document may be based on third party data. SLR Consulting Australia Pty Ltd does not guarantee the accuracy of such information.

Project No.:	640.30541
Date:	04-10-2022
Drawn by:	SB
Scale:	1:1,500
Sheet Size:	@ A4
Projection:	GDA 2020 MGA Zone 55

4

Hospital Site Boundary

Proposed Development Area

Assessment Area

Boreholes

Erilyan

Figure 1

Sample Location Plan Albury Wodonga Private Hospital

Appendix B

Tables and QC Review

SLK																		
				Location Code	SB01		302	SB03	SB04		SB05		SB06		07	SB08	SB09	SB10
				Depth Date	0.05	0.05	0.15	0.05	0.15	2	0.05	22	0.05	0.05	0.15	0.05	0.15	0.05
				Sample Type	Normal	Normal	Normal	Normal	Normal	Normal	Duplicate	Split	Normal	Normal	Normal	Normal	Normal	Normal
				Field ID Lab Report Number	SB1/0.05 33613	SB2/0.05 33613	SB2/0.15 33613	SB3/0.05 33613	SB4/0.15 33613	SB5/0.05 33613	QC01_140922 33613	QC02_14092022 923950	SB6/0.05 33613	SB7/0.05 33613	SB7/0.15 33613	SB8/0.05 33613	SB9/0.15 33613	SB10/0.05 33613
			NSW 2014	NSW 2014	55015	33013	55015	55015	55015	55015	55015	525550	55015	55015	55015	55015	55015	
			General Solid Waste CT1 (No	Restricted Solid Waste CT2 (No														
	Unit	EQL	Leaching)	Leaching)					-		-		-					
Metals			100	100	- 4		42				4	2.0					6	
Arsenic Barium	mg/kg mg/kg	2 10	100	400	<4	5	13	5	-	<4	<4	2.9 69	6	4	- 5	4	6	<4
Beryllium	mg/kg	2	20	80	-	-	-	-	-	-	-	<2	-	-	-	-	-	-
Boron	mg/kg	10	20	00	-	-	-	-	-	-	-	<10	-	-	-	-	-	-
Cadmium Chromium (III+VI)	mg/kg mg/kg	0.4	20	80	<0.4 8	<0.4 10	<0.4 14	<0.4 13	<0.4 14	<0.4 11	<0.4 11	<0.4 12	<0.4 13	<0.4 14	<0.4 12	<0.4 14	<0.4 12	<0.4 12
Chromium (hexavalent)	mg/kg	1	100	400	-	<1	-	-	-	-	-	-	-	-	-	-	-	-
Copper	mg/kg	1			4	6	9	10	8	10	10	11	16	14	9	11	7	15
Antimony Molybdenum	mg/kg mg/kg	10	100	400	- <1	- <1	- <1	<1	<1	<1	- 1	<10 <5	<1	<1	<1	- <1	<1	- <1
Silver	mg/kg	1	100	400	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1	<1	<1
Tin Lead	mg/kg	1	100	400	<1 7	<1 9	<1 18	<1 10	<1 13	<1 11	<1 10	<10 11	<1 14	<1 14	<1 12	<1 11	<1 12	<1 11
Mercury	mg/kg mg/kg	0.1	4	16	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	1	40	160	5	6	8	8	7	7	7	7.2	7	8	7	7	7	7
Selenium	mg/kg	2	20	80	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Zinc TRH	mg/kg	1			18	25	23	43	20	31	31	33	37	38	22	43	21	59
C6-C10	mg/kg	25			-	<25	-	-	-	-	-	-	-	-	-	-	-	-
C6-C10 (F1 minus BTEX) C10-C16	mg/kg mg/kg	25 50			-	<25 <50	-	-	-	-	-	-	-	-	-	-	-	-
C10-C16 (F2 minus Naphthalene)	mg/kg	50			-	<50	-	-	-	-	-	-	-	-	-	-	-	-
C16-C34 (F3)	mg/kg	100			-	<100	-	-	-	-	-	-	-	-	-	-	-	-
C34-C40 (F4) C10-C40 (Total)	mg/kg mg/kg	100 50			-	<100 <50	-	-	-	-	-	-	-	-	-	-	-	-
TPH	<u>ة (م</u>																	
C6-C9	mg/kg	25	650	2,600	-	<25	-	-	-	-	-	-	-	-	-	-	-	-
C10-C14 C15-C28	mg/kg mg/kg	50 100			-	<50 <100	-	-	-	-	-	-	-	-	-	-	-	-
C29-C36	mg/kg	100			-	<100	-	-	-	-	-	-	-	-	-	-	-	-
C10-C36 (Total)	mg/kg	50	10,000	40,000	-	<50	-	-	-	-	-	-	-	-	-	-	-	-
Benzene	mg/kg	0.1	10	40	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	mg/kg	0.1	288	1,152	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	mg/kg	0.1	600	2,400	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
Xylene (m & p) Xylene (o)	mg/kg mg/kg	0.2			-	<0.2	-	-	-	-	-	-	-	-	-	-	-	-
Xylene Total	mg/kg	1	1,000	4,000	-	<1	-	-	-	-	-	-	-	-	-	-	-	-
Naphthalene (VOC)	mg/kg	1			-	<1	-	-	-	-	-	-	-	-	-	-	-	-
Total BTEX Inorganics	mg/kg	1			-	<1	-	-	-	-	-	-	-	-	-	-	-	-
Cyanide Total	mg/kg	0.5	320	1,280	-	<0.5	-	-	-	-	-	-	-	-	-	-	-	-
pH (Lab)	-				-	5.3	-	-	-	-	-	-	-	-	-	-	-	-
Major/minor ions Fluoride	mg/kg	50	3,000	12,000	-	60	-	-	-	-	-	-	-	-	-	-	-	-
МАН																		
Monocylic aromatic hydrocarbons EPAVic	mg/kg	7			-	<7						_						
Styrene	mg/kg	0.1	60	240	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
Phenols																		
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	mg/kg mg/kg	0.05	8,000 40	32,000 160	-	<0.05	-	-	-	-	-	-	-	-	-	-	-	-
2,4-Dichlorophenol	mg/kg	0.05		100	-	<0.05	-	-	-	-	-	-	-	-	-	-	-	-
2,4-Dimethylphenol	mg/kg	0.2			-	< 0.2	-	-	-	-	-	-	-	-	-	-	-	-
2,6-Dichlorophenol 2-Chlorophenol	mg/kg mg/kg	0.05			-	<0.05	-	-	-	-	-	-	-	-	-	-	-	-
2-Methylphenol	mg/kg	0.2	4,000	16,000	-	<0.2	-	-	-	-	-	-	-	-	-	-	-	-
2-Nitrophenol	mg/kg	0.2			-	<0.2	-	-	-	-	-	-	-	-	-	-	-	-
4-chloro-3-methylphenol Pentachlorophenol	mg/kg mg/kg	0.2			-	<0.2	-	-	-	-	-	-	-	-	-	-	-	-
Phenol	mg/kg	0.2			-	<0.2	-	-	-	-	-	-	-	-	-	-	-	-
2,3,4,5-Tetrachlorophenol 2,3,4,6-Tetrachlorophenol	mg/kg mg/kg	0.1			-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
2,3,5,6-Tetrachlorophenol	mg/kg	0.1			-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
4-Methylphenol Rhenols (halogenated) EPAV(ic	mg/kg	0.4	4,000	16,000	-	<0.4	-	-	-	-	-	-	-	-	-	-	-	-
Phenols (halogenated) EPAVic Phenols (non-halogenated) EPAVic	mg/kg mg/kg	1 50			-	<1 <50	-	-	-	-	-	-	-	-	-	-	-	-
2,4-Dinitrophenol	mg/kg	4			-	<4	-	-	-	-	-	-	-	-	-	-	-	-
4,6-Dinitro-2-methylphenol 4,6-Dinitro-o-cyclohexyl phenol	mg/kg mg/kg	2 20			-	<2 <20	-	-	-	-	-	-	-	-	-	-	-	-
4-Nitrophenol	mg/kg	4			-	<4	-	-	-	-	-	-	-	-	-	-	-	-
Organochlorine Pesticides in s		<u>.</u>																
Tot +ve report Chlordane Herbicides	mg/kg	0.1			-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
Dinoseb	mg/kg	5			-	<5	-	-	-	-	-	-	-	-	-	-	-	-
Chlorinated Hydrocarbons	malka	0.1				20.1												\square
Hexachlorobutadiene 1,1,1,2-tetrachloroethane	mg/kg mg/kg	0.1	200	800	-	<0.1 <0.1	-	-	-	-	-	-	-	-	-	-	-	-
1,1,1-trichloroethane	mg/kg	0.1	600	2,400	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2,2-tetrachloroethane 1,1,2-trichloroethane	mg/kg	0.1	26 24	104 96	-	<0.1 <0.1	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2-trichloroethane	mg/kg mg/kg	0.1	14	56	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
1,2-dichloroethane	mg/kg	0.1	10	40	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
Carbon tetrachloride Chlorinated hydrocarbons EPAVic	mg/kg mg/kg	0.1	10	40	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
Chloroform	mg/kg mg/kg	0.1	120	480	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
cis-1,2-dichloroethene	mg/kg	0.1			-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
Dichloromethane Other chlorinated hydrocarbons	mg/kg	0.5	172	688	-	<0.5	-	-	-	-	-	-	-	-	-	-	-	-
EPAVic	mg/kg	0.1			-	<0.1	-	-	-		-	-	-	-	-	-	-	-
Tetrachloroethene	mg/kg	0.1	14	56	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
trans-1,2-dichloroethene Trichloroethene	mg/kg mg/kg	0.1	10	40	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl chloride	mg/kg	0.1	4	16	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
NA Malatura Cantont																		
Moisture Content	%	0.1			17	26	15	29	14	33	33	-	26	38	18	37	16	35

				Location Code	SB01		B02	SB03	SB04		SB05		SB06		307	SB08	SB09	SB10
				Depth	0.05	0.05	0.15	0.05	0.15		0.05		0.05	0.05	0.15	0.05	0.15	0.05
				Date	14-09-2022				14-09-2022	2	14-09-20	1		14-09-2022		14-09-2022		
				Sample Type	Normal	Normal	Normal	Normal	Normal	Normal	Duplicate	Split QC02 14092022	Normal	Normal	Normal	Normal	Normal	Normal
				Field ID Lab Report Number	SB1/0.05 33613	SB2/0.05 33613	SB2/0.15 33613	SB3/0.05 33613	SB4/0.15 33613	33613	33613	923950	SB6/0.05 33613	SB7/0.05 33613	SB7/0.15 33613	SB8/0.05 33613	SB9/0.15 33613	SB10/0.05 33613
		1	NSW 2014	NSW 2014	55015	55015	55015	55015	33013	55015	55015	525550	33013		55015	33013	55015	55015
			General Solid	Restricted Solid														
			Waste CT1 (No	Waste CT2 (No														
	Unit	EQL	Leaching)	Leaching)														
Metals																		
Arsenic	mg/kg	2	100	400	<4	5	13	5	8	<4	<4	2.9	6	4	5	4	6	<4
РАН																		
Benzo(b+j+k)fluoranthene	mg/kg	0.2			<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Acenaphthene	mg/kg	0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Naphthalene Acenaphthylene	mg/kg mg/kg	0.1			<0.1 <0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.5 <0.5	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1 <0.1
Atthracene	mg/kg	0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benz(a)anthracene	mg/kg	0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a) pyrene	mg/kg	0.05	0.8	3.2	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.5	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05
Benzo(b+j)fluoranthene	mg/kg	0.5			-	-					-	<0.5	-	-	-		-	
Benzo(g,h,i)perylene	mg/kg	0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.5			-	-	-	-	-	-	-	<0.5	-	-	-	-	-	-
Chrysene	mg/kg	0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene	mg/kg	0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene Pyrene	mg/kg mg/kg	0.1			<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.5 <0.5	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1
PAHs (Sum of total)	mg/kg	0.05	200	800	< 0.1	<0.1	<0.05	< 0.05	<0.05	<0.1	<0.1	<0.5	<0.1	<0.05	<0.1	<0.1	<0.1	<0.05
Benzo(a)pyrene TEQ (LOR)	mg/kg	0.05	200	800	< 0.5	< 0.05	<0.05	< 0.05	<0.05	<0.5	<0.05	1.2	< 0.5	<0.5	<0.05	<0.5	< 0.05	<0.5
Benzo(a)pyrene TEQ calc (Half)	mg/kg	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	0.6	< 0.5	<0.5	<0.5	<0.5	< 0.5	<0.5
Benzo(a)pyrene TEQ calc (Zero)	mg/kg	0.5			< 0.5	< 0.5	< 0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5
Organochlorine Pesticides																		
Chlordane (trans)	mg/kg	0.1			-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
Chlordane (cis)	mg/kg	0.1			-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
d-BHC	mg/kg	0.1			-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
DDT	mg/kg	0.1			-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
Heptachlor epoxide	mg/kg	0.1			-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
DDD	mg/kg	0.1			-	< 0.1	-	-	-	-	-	-	-	-	-	-	-	-
Methoxychlor DDT+DDE+DDD	mg/kg	0.1			-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
Dieldrin	mg/kg mg/kg	0.1			-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
Endrin	mg/kg	0.1			-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
Organochlorine pesticides EPAVic	mg/kg	0.1			-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
Other organochlorine pesticides		0.2																
EPAVic	mg/kg	0.1			-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
4,4-DDE	mg/kg	0.1			-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
a-BHC	mg/kg	0.1			-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
Aldrin	mg/kg	0.1			-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
Aldrin + Dieldrin	mg/kg	0.1			-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
g-BHC (Lindane) b-BHC	mg/kg	0.1			-	< 0.1	-	-	-	-	-	-	-	-	-	-	-	-
Endosulfan I	mg/kg mg/kg	0.1			-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
Endosulfan II	mg/kg	0.1			-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
Endosulfan sulphate	mg/kg	0.1			-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
Endrin aldehyde	mg/kg	0.1			-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
Heptachlor	mg/kg	0.1			-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
PCBs																		
Arochlor 1016	mg/kg	0.1			-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
Arochlor 1221	mg/kg	0.1			-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
Arochlor 1232	mg/kg	0.1			-	< 0.1	-	-	-	-	-	-	-	-	-	-	-	-
Arochlor 1242	mg/kg	0.1			-	< 0.1	-	-	-	-	-	-	-	-	-	-	-	-
Arochlor 1248 Arochlor 1254	mg/kg	0.1			-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
Arochlor 1254 Arochlor 1260	mg/kg mg/kg	0.1			-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
PCBs (Sum of total)	mg/kg mg/kg	0.1	50	50	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
Halogenated Benzenes		0.1	50	30	-	~U.T	-	-	-	-	-	-	-	<u> </u>	-	-	<u> </u>	<u> </u>
1,2,4-trichlorobenzene	mg/kg	0.1			-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
1,2-dichlorobenzene	mg/kg	0.1	86	344	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
1,4-dichlorobenzene	mg/kg	0.1	150	600	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	mg/kg	0.1	2,000	8,000	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
Hexachlorobenzene	mg/kg	0.1			-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-

Environmental Standards

NSW EPA, November 2014, NSW 2014 General Solid Waste CT1 (No Leaching) NSW EPA, November 2014, NSW 2014 Restricted Solid Waste CT2 (No Leaching)

Table 2 - RPD Results

		Field ID	SB5/0.05	QC01_140922		SB5/0.05	QC02_14092022	
		Date	14-09-2022	14-09-2022	RPD	14-09-2022	14-09-2022	RPD
		Sample Type	Normal	Field_D		Normal	Interlab_D	
		Lab Report Number	33613	33613	1	33613	923950	
	Unit	EQL		1				
Metals								-
Arsenic	mg/kg	2	<4	<4	0	<4	2.9	0
Barium	mg/kg	10	-	-	-	-	69	-
Beryllium	mg/kg	2	-	-	-	-	<2	-
Boron	mg/kg	10	-	-	-	-	<10	-
Cadmium	mg/kg	0.4	<0.4	<0.4	0	<0.4	<0.4	0
Chromium (III+VI)	mg/kg	1	11	11	0	11	12	9
Copper	mg/kg	1	10	10	0	10	11	10
Antimony	mg/kg	10	-	-	-	-	<10	-
Molybdenum	mg/kg	1	<1	1	0	<1	<5	0
Silver	mg/kg	1	<1	<1	0	<1	<2	0
Tin	mg/kg	1	<1	<1	0	<1	<10	0
Lead	mg/kg	1	11	10	10	11	11	0
Mercury	mg/kg	0.1	<0.1	<0.1	0	<0.1	<0.1	0
Nickel	mg/kg	1	7	7	0	7	7.2	3
Selenium	mg/kg	2	<2	<2	0	<2	<2	0
Zinc	mg/kg	1	31	31	0	31	33	6
NA								
Moisture Content	%	0.1	33	33	0	33	_	-
РАН								
Benzo(b+j+k)fluoranthene	mg/kg	0.2	< 0.2	<0.2	0	<0.2	-	-
Acenaphthene	mg/kg	0.1	<0.1	<0.1	0	<0.1	<0.5	0
Naphthalene	mg/kg	0.1	<0.1	<0.1	0	<0.1	<0.5	0
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	0	<0.1	<0.5	0
Anthracene	mg/kg	0.1	<0.1	<0.1	0	<0.1	<0.5	0
Benz(a)anthracene	mg/kg	0.1	<0.1	<0.1	0	<0.1	<0.5	0
Benzo(a) pyrene	mg/kg	0.05	<0.05	<0.05	0	<0.05	<0.5	0
Benzo(b+j)fluoranthene	mg/kg	0.03	-0.05	<0.05	-		<0.5	-
		0.5					<0.5	
Benzo(g,h,i)perylene Benzo(k)fluoranthene	mg/kg		<0.1	<0.1	0	<0.1		0
	mg/kg	0.5					<0.5	
Chrysene	mg/kg	0.1	<0.1	<0.1	0	<0.1	<0.5	0
Dibenz(a,h)anthracene	mg/kg	0.1	<0.1	<0.1	0	<0.1	<0.5	0
Fluoranthene	mg/kg	0.1	<0.1	<0.1	0	<0.1	<0.5	0
Fluorene	mg/kg	0.1	<0.1	<0.1	0	<0.1	<0.5	0
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	<0.1	<0.1	0	<0.1	<0.5	0
Phenanthrene	mg/kg	0.1	<0.1	<0.1	0	<0.1	<0.5	0
Pyrene	mg/kg	0.1	<0.1	<0.1	0	<0.1	<0.5	0
PAHs (Sum of total)	mg/kg	0.05	<0.05	<0.05	0	<0.05	<0.5	0
Benzo(a)pyrene TEQ (LOR)	mg/kg	0.5	<0.5	<0.5	0	<0.5	1.2	82
Benzo(a)pyrene TEQ calc (Half)	mg/kg	0.5	<0.5	<0.5	0	<0.5	0.6	18
Benzo(a)pyrene TEQ calc (Zero)	mg/kg	0.5	<0.5	< 0.5	0	< 0.5	<0.5	0

*RPDs have only been considered where a concentration is greater than 1 times the EQL.

**Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 81 (1 - 10 x EQL); 50 (10 - 30 x EQL); 30 (> 30 x EQL))

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

Appendix B - Quality Assurance (QA) and Quality Control (QC) Review

This appendix reviews the QA and QC documentation for the assessment. QA encompasses the actions, procedures, checks and decisions undertaken to ensure sample integrity and representativeness, and the reliability and accuracy of analysis results.

The QA documentation should also include an indication of the Data Quality Objectives put in place during the works program in relation to each significant action, test or process involved in the assessment. QC activities measure the effectiveness of the QA procedures by undertaking testing, and then comparing results to previously established objectives.

QC review work includes the internal laboratory testing as well as results of QC samples submitted during field investigations such as blind replicate and splits, trip blanks and spikes, rinsates, trip blank and field blank samples, as applicable.

The QA/QC process was conducted in accordance with the following guidance:

- National Environment Protection Council (NEPC) (1999) National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended in 2013. Referred to as ASC NEPM.
- Australian Standard (AS) 4482.1-2005 Guide to the Sampling and Investigation of Potentially Contaminated Soil.
- AS4482.2-1999 (1999) Guide to the Sampling and Investigation of Potentially Contaminated Soil, Part 2: Volatile Substances.

Table 1 provides a summary of the QA/QC review process for the assessment. Non-conformance to the SAQP and the QA/QC process are noted at the end of this review.

Quality Aspect	Evidence and Evaluation
QA Documentation	
Compliance with Standards	The Assessment was carried out in accordance with the proposed scope of work, as documented in the proposal (A00.010851.PROMO-P01-v3.0-20220826) issued to the client on 26 August 2022.
Work Plan	Prior to mobilising to site a Work Plan was prepared for briefing the field crew.
Quality Control Program	A QC program was implemented during the Assessment and the QA procedures used have been reiterated in the main report.
DQOs	The DQOs were expressed in terms of the purpose of the assessment and the relevant assessment criteria provided in the main report.
Data Representativeness	
Holding Times	All samples were recorded in the Chain of Custody (COC) documentation in accordance with Schedule B2, ASC NEPM and AS4482 which provides evidence of sampling date and times. COC record and laboratory reports provide evidence of holding times.
Off-Site and /or background samples	No off-site and / or background samples were collected, as the scope of the Assessment was limited to targeted soil sampling.
Verification of field procedures	The methodology conducted during this Assessment is documented in the body of the report and was in general conformance with the work plan.
Data Precision & Accuracy –	Sample QA/QC Review

Table 1Summary of QA / QC Review

Quality Aspect	Evidence and Evaluation						
QC Testing – Field Duplicate (Soil Blind Replicates - Primary Lab)	 Acceptance Criteria: RPD < 30% Soil Samples Analysed: 10 Blind Replicate Samples Analysed: 1 Blind Replicate Analyte Pairs: 38 Number of Analyte Pairs Exceeding Criteria: 0 Percentage of Analyte Pairs Exceeding Criteria: 0% RPD results are presented in Table 3, Appendix B. 						
QC Testing – Field Split (Soil Blind Replicates – Secondary Lab)	 Acceptance Criteria: RPD < 30% Soil Samples Analysed: 10 Blind Replicate Samples Analysed: 1 Blind Replicate Analyte Pairs: 38 Number of Analyte Pairs Exceeding Criteria: 0 Percentage of Analyte Pairs Exceeding Criteria: 0% Benzo(a)pyrene TEQ RPD is due to variable laboratory limit of reporting and is hence not considered an exceedance. RPD results are presented in Table 3, Appendix B. 						
Data Precision & Accuracy –	Sample QA/QC Review						
Trip Blanks	Trip blanks were not collected as part of this assessment.						
Laboratory Internal QC	Evidence of the laboratories internal QC testing is present and complete in the reports. Envirolab performed internal QC with adequate testing and satisfactory results for matrix spikes, method blank laboratory control samples and laboratory duplicates. Exceptions included internal RPDs of chromium and lead in sample 33613-1 which failed internal acceptance criteria.						
Laboratory Method Detection Limit	Laboratory reports indicate the method detection limits were generally lower than the respective assessment criteria.						
National Association of Testing Authorities (NATA) endorsement of laboratory reports	Laboratory reports were certified with the NATA endorsement stamp and signature.						
Calibration of Field Equipment	All equipment used during the investigation was calibrated by the supplier prior to use.						
Decontamination and Equipment Blanks	Rinsate blanks were not collected as part of this assessment.						
Data Comparability							
Standard Procedures	Fieldwork procedures are detailed in the reports and are comparable for each phase of Assessment and were based with consideration of industry standards and guidelines.						
Qualified Personnel	Staff involved in managing and reviewing the project and those involved in fieldwork are qualified person(s).						
Volatile Losses	There is no evidence of significant volatile losses based on the results of the trip blank sample.						
Sample Integrity	All samples were received intact by the laboratory and were stored on ice.						
Data Completeness							
Completeness of test program	The scope of work undertaken was generally consistent with that required to characterise the site as set out in the proposal and within relevant industry guidelines detailed previously in this review.						
Validity of Data Set	The data quality review indicates no significant systematic errors in the data collection process for soil therefore, the data set used as the basis for the soil investigation is considered valid and complete.						

Appendix C

Soil Sample Descriptions

Soil Description Summary

Sample Register							
Client	Erilyan	Project Manager	James Bracken				
Project Number	640.30541.00000	Sampler Name	KK + PB				
Project Address	1125 Pemberton Street, West Albury	Date Commenced	14 September 2022				

SAMPLE ID	DEPTH (m)	DATE	FILL/ NATURAL /SEDIMENT	SAMPLE DESCRIPTION		OTHER COMMENTS
SB01	0.05	14-09-2022	FILL	Clayey SAND (SP), poorly graded, medium grained, brown, loose, moist, slight odour, no staining, with root matter and crushed rocks (<10 mm)	0.0	Top horizon of approximately 0.1 m thickness
SB01	0.15	14-09-2022	FILL	Sandy CLAY (CI), moderate plasticity, firm, brown with orange, moist, slight odour, no staining, with root matter and crushed rocks (<10 mm)	0.0	
SB02	0.05	14-09-2022	FILL	Clayey SAND (SP), poorly graded, medium grained, brown, loose, moist, slight odour, no staining, with root matter and crushed rocks (<10 mm)	0.0	Top horizon of approximately 0.1 m thickness
SB02	0.15	14-09-2022	FILL	Sandy CLAY (CI), moderate plasticity, firm, brown with orange, moist, slight odour, no staining, with root matter and crushed rocks (<10 mm)	0.0	
SB03	0.05	14-09-2022	FILL	Sandy CLAY (CL), low plasticity, firm, brown, moist, slight odour, no staining, with root matter and crushed rocks (<10 mm)	0.0	Top horizon of approximately 0.1 m thickness
SB03	0.15	14-09-2022	FILL	Clayey SAND (SP), poorly graded, fine to medium grained, light brown, loose, moist, slight odour, no staining, with high root matter, with crushed rocks (<10 mm)	0.0	
SB04	0.05	14-09-2022	FILL	Sandy CLAY (CL), low plasticity, firm, dark brown, moist, slight odour, no staining	0.0	Top horizon of approximately 0.1 m thickness
SB04	0.15	14-09-2022	FILL	Clayey SAND (SP), poorly graded, fine to medium grained, light brown, loose, moist, slight odour, no staining, with crushed rocks (<10 mm)	0.0	

Electronic version in LQR Folder is

Soil Description Summary

SAMPLE ID	DEPTH (m)	DATE	FILL/ NATURAL /SEDIMENT	SAMPLE DESCRIPTION		OTHER COMMENTS
SB05	0.05	14-09-2022	FILL	Sandy CLAY (CI), moderate plasticity, firm, light brown, moist, slight odour, no staining, with root matter and crushed rocks (<10 mm)	0.0	Top horizon of approximately 0.1 m thickness QC01_140922 and QC02_140922 collected
SB05	0.15	14-09-2022	FILL	Clayey SAND (SP), poorly graded, medium grained, brown, loose, moist, slight odour, no staining, with organic matter	0.0	
SB06	0.05	14-09-2022	FILL	Sandy CLAY (CI), moderate plasticity, firm, brown, moist, slight odour, no staining, with root matter	0.0	Top horizon of approximately 0.1 m thickness
SB06	0.15	14-09-2022	FILL	Clayey SAND (SP), poorly graded, fine grained, light brown, loose, moist, slight odour, no staining, with root matter and pebbles (<20 mm)	0.0	
SB07	0.05	14-09-2022	FILL	Sandy CLAY (CI), moderate plasticity, firm, brown, moist, slight odour, no staining, with root matter	0.0	Top horizon of approximately 0.1 m thickness
SB07	0.15	14-09-2022	FILL	Clayey SAND (SP), poorly graded, fine grained, light brown, loose, moist, slight odour, no staining, with root matter and crushed rock (<5 mm)	0.0	
SB08	0.05	14-09-2022	FILL	Sandy CLAY (CI), moderate plasticity, firm, brown, moist, slight odour, no staining, with root matter	0.0	Top horizon of approximately 0.1 m thickness
SB08	0.15	14-09-2022	FILL	Clayey SAND (SP), poorly graded, fine to medium grained, grey, loose, moist, slight odour, no staining, with root matter and crushed rock (<10 mm)	0.1	
SB09	0.05	14-09-2022	FILL	Clayey SAND (SP), poorly graded, fine to medium grained, brown, loose, moist, slight odour, no staining, with root matter	0.0	Top horizon of approximately 0.1 m thickness
SB09	0.15	14-09-2022	FILL	Clayey SAND (SP), poorly graded, medium grained, light brown, loose, moist, slight odour, no staining, with root matter	0.0	
SB10	0.05	14-09-2022	FILL	Sandy CLAY (CI), moderate plasticity, firm, brown, moist, slight odour, no staining, with root matter	0.0	Top horizon of approximately 0.06 m thickness

Electronic version in LQR Folder is

Soil Description Summary

SAMPLE ID	DEPTH (m)	DATE	FILL/ NATURAL /SEDIMENT	SAMPLE DESCRIPTION	PID	OTHER COMMENTS
SB10	0.15	14-09-2022	FILL	Clayey SAND (SP), poorly graded, medium grained, loose, moist, slight odour, no staining, with root matter	0.0	

Appendix D

Laboratory Reports

	SON: 5/A Cambridge Street, Pichmand Nalism, 7030 NJ / PLYMDUTH: Level 2, 10 Devon Stre New Plymouth, #310 NJ	St, South NEW East.	NSVILLE: 12 Canciar sville QLD 4910 LAND: 68 Geach Read		03 Murray Street, Pert APTON.		Sizeet, Mackay, 11, 176 Wellington	MACKAY: 21 Rover GLD 4740 MELBOURNE: Lvi	. Canborta, 🔲 uwn, NT 💽	NDERRA: GPO Box 410 T 2600 ARWIN: 23 Parep Rd, Di	(Tick one)		CHAIN OF CUSTODY DOCUMENTATION SLR Consulting Australia Pty Ltd ABN 29 001 584 612			
	COC Number	Turnaround Time				vices	Ser	rolab	Env	ABORATORY: ABORATORY A AMPLER:		_	· · · · · · · · · · · · · · · · · · ·		JENT: EVILON	
	1 of 2	(TAT)	adi Yic	<u>4900 E</u>	19 Cia	h Roo	Searc	25 DE	DDRESS:	ABORATORY A				1700	NOJECT NUMBER: 640.3064	
	Ilegant TAT	Standard TAT						0400	₋┡ ┥┙┶┣╡			······································	000	<u>541.000</u>	OJECT MANAGER:	
		Required TAT: Standa		<u> </u>	<u>witi-g.</u>		7024	Deloc		mail Reports a			·	199 517	CONTACT No: 0422 78	
ion	ditional Information nt on any gross contaminatio r specific requirements)	(Comme			0		,	m	PAH, metals	REQUESTED ANALYSIS				is and and and and and and and and and and 	DMMENTS OR ADDITIONAL DIRECTIONS	
		I						10 b	6.A	reservatives	Containers and P	Matrix {Soil, water, ACM, etc}	Date & Time		0. Sample ID	
					 				×		ice	Soil	14 8/22		581 0.05	
virolab Rusea	25.00 251	×													SB1 0.15	
South : (03) 9	Ph:							Х	<u> </u>						58210.05	
13	<u>010</u> :3361			 					<u>×</u>	,					582/0.15	
10	Received: 15	Fini	-		<u> </u>				<u>×</u>						58310.05	
	an Cocydathient	X Tem													SB3 015	
en Nor	unity: Intact/Broker														60410.05	
\uparrow									X						SB4 foils	
									X			<i>.</i>		•	565 0.05	
		X													535 015	
									X	,	11	4	1		53610.05	
	Viai Sulfuric Preserved; AV = Bag; LI = Lugols lodine Preserved	phate Preserved; VS = VOA ate Soils; B = Unpreserved 8	A Vial Sodium Bisul Bag for Acid Sulph	Preserved; VB = VC Bottle; ASS = Plast	c V = VOA Vial HCI ottles; ST = Sterile I	npreserved Plastic DTA Preserved Bo	AP - Airfreight U wed Bottle; E = E	Slass Unpreserved; Zinc Acetate Prese	tic; AG = Amber served Glass; 2 (oxide Preserved Pla: • Formaldehyde Pre	iserved; S = Sodium Hydr furie Preserved Plastic; F	SH = Sodium Hydroxide/Cd rved Speciation bottle; SP =	r Plastic; HS # HUI presi	: Glass; H = HCI preserved	ple Container Codes: P = Unpreserved Plastic; N = Nitric Preser reight Unpreserved Vial SG = Suffuric Preserved Amber Glass; I les; STT = Sterlle Sodium Thiosulfate Preserved Bottles: G = unp	
	Temperature Received:		Date / Time			- ^	Sign	eived by	VV Rec	109120	ate/1/me 14		g the collection of	ires were used during	test that the proper field sampling procedures we inquished By Sampler Sign	
		\$ 54-20	Date / Time		m		sig	eived by			ata/Time 151			EN .	inquished By Sign Br	
		5/9/77	Date / Time			IN	Sign	eived by			sta / Time				inquished By Sign	

-

`

,

•

,

•

•

..

.

.

	CHAIN OF CUSTODY DOCUMENTATION		BRISBANE: Lavel 16, 175 Brisbane CANDERRA: GPG Box 410	Eagle Street GOLD C Varsity Li		NEWCASTLE: 10 Kings Road, Nyt Lanibton, NSW 2305 PERTH: 503 Murray Street, Perity			NELSON: 6/A Cambridge Street, Richmond, Port Nelson, 7020 NE NEW PLYMOUTH: Level 2, 10 Devon Street
	SLR Consulting Australia Pty Ltd ABN 29 001 584 612		DARWIN: 21 Parap Rd. D	unera, NT CLBO	JRNE: Lvi 11, 176 Wellington	_ 5060	Townsville CL0 4810		NEW PLEMOU TH: Level 2, 10 Deven Street East, New Plymouth, 4310 Hz
	CLIENT: EYILYN		LABORATORY:	· • • • • •	ast Methoding Vic 3002	Tet and the provide state of the second state of the	<u> </u>	Turnaroun	
				DDRESS: 25	RESPOND R	St. Croyd	onsouth VIC		
	PROJECT: Albury HOS Pital PROJECT NUMBER: 640.20541.00000		SAMPLER:	KK PB				Standard	ITAT
	PROJECT MANAGER: Jones Brackey		SAMPLER CONT		0950329	1	•	🗋 🗋 Non Stat	idard or Urgent TAT
	PM CONTACT NO: 0428 788 513		Email Reports a	nd Invoices to: 🥊	boy@ SIV	consulting .	.com	Required TAT	: Standard
	COMMENTS OR ADDITIONAL DIRECTIONS		REQUESTED ANALYSIS	Metals (1828.2)				461d	Additional Information (Comment on any gross contamination or specific requirements)
	No. Sample ID Date & Time Matrix (50%, water, ACM, etc.	c) Containers an	d Preservatives	RAH .				T	
12	SBC 0.15 14/9/22 Soil	ite	2		-			×	
13	537/0.05			X					
14	58710.15		' 1	X					· · · ·
15	5B810-05		p^*	×			×		r sp
16	558/015							X	•
17	539 0.05							X	
18	58910.15			X					_
(9	5810 0.05	_		X	r		-		
\mathcal{V}	5310/0.15		<u> </u>					X	
21	9001 - 14092022	<u> .</u>		<u>×</u>					
22	903-14092022 V V	J/4.6		· · · · · ·				X	
	Sample Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; SH = Sodium Hydroxik Airfreight Unpreserved ViaISG = Sulluric Preserved Amber Glass; H = KCI preserved Plastic; HS = HCI preserved Speciation bottle Bottles; STI = Sterlie Sodium Thiosulfate Preserved Bottles; G = unpreserved glass soil Jar;	le/Cd Preserved; S = Sodium ; SP = Sulfuric Preserved Plast	Hydroxide Presorved Pla Sc, F = Formaldohyde Pro	stic; AG = Amber Glass Unp. Served Glass; Z = Zinc Acer.	reserved; AP - Alrfreight Unpre atc Preserved Bottle; E = EDTA	served Plastic V = VOA Vial HCl Pr Preserved Bottles; \$T = Stenic Bo	eserved; VB = VOA Vial Sodium Bh Htle; ASS = Plastic Bag for Acid Sul	sulphate Preserved; phate Soils; B = Ung	VS = VOA Viał Sulfuric Preserved; AV = steserved Bag; II = Lugols lodine Preserved
	I attest that the proper field sampling procedures were used during the collection of these samples. Relinquished By Sampler Sign	Date / Time	4/09/202	Received by	L Sign		Date / Time		Temperature Received:
	Relinquished By Sign Rev.	+ /	5/9/202		sign 2	solen	Date / Time	15-Sep	201
	Relinquished By	Date / Time	. <u> </u>	Received by	Sign	\mathcal{D}	Date / Time	15/0	19
		ن ار ب	2 】 						, <u> </u>

1.5

 $\hat{\nabla}_{t,n}$ Ē

1.

Sample Receipt Melbourne

From:	Paul Bay <pbay@slrconsulting.com></pbay@slrconsulting.com>
Sent:	Thursday, 15 September 2022 1:45 PM
To:	Sample Receipt Melbourne; Brad O'Reilly
Cc:	Gemma Sliz; Alisha Purathattil; Lucy Olsen
Subject:	RE: 640.30541.00000 - Sample pickup from SLR Consulting

CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Hi Lucy,

Apologies for that. Thanks for the info and photos.

Based on review, the two middle samples should be re-labelled as SB7.

Kind regards, Paul

Paul Bay Principal Consultant - Land Quality & Remediation

 (d)
 +61 3 9249 9434

 (o)
 +61 3 9249 9400

 (fi)
 +61 409 503 291

 (g)
 pbay@strconsulting.com

SLR Consulting Australia Pty Ltd Lvi 11, 176 Wellington Parade, East Melbourne, VIC, Australia, 3002

Follow us on Linkedin

Winners: RoSPA RESPA President's Award 2022

Confidentiality Notice and Limitation

This communication, and any attachment(s) contains information which is confidential and may also be legally privileged. It is intended for the exclusive use of the recipient(s) to whom it is addressed. If you are not the intended recipient, any disclosure, copying, distribution or action taken or not taken in reliance on it is prohibited and may be unlawful. If you have received this communication in error, please advise SLR by e-mail and then delete the e-mail from your system. As e-mails and any information sent with them may be intercepted, corrupted and/or delayed, SLR does not accept any liability for any errors or omissions in the message or any information sent with them may be intercepted.

attachment howsoever caused after transmission. Any advice or opinion is provided on the basis that it has been prepared by SLR with reasonable skill, care and diligence, taking account of the manpower, timescales and resources devoted to it by agreement with its Client. It is subject to the terms and conditions of any appointment to which it relates. Parties with whom SLR is not in a contractual relationship in relation to the subject of the message should not use or place reliance on any information, advice, recommendations and opinions in this message and any attachment(s) for any purpose.

© 2017 SLR Consulting Limited. All Rights Reserved.

From: Sample Receipt Melbourne <loginvic@envirolab.com.au>
Sent: Thursday, 15 September 2022 12:57 PM
To: Brad O'Reilly <boreilly@slrconsulting.com>
Cc: Paul Bay <pbay@slrconsulting.com>; Gemma Sliz <GSliz@envirolab.com.au>; Alisha Purathattil
<APurathattil@envirolab.com.au>; Lucy Olsen <LOlsen@envirolab.com.au>
Subject: RE: 640.30541.00000 - Sample pickup from SLR Consulting

Hi Brad & Paul,

We just received the samples in the lab, and I noticed a couple of discrepancies.

We did not receive any samples labelled "SB7/0.05" or "SB7/0.15".

However, we did receive 2 jars labelled "SB6/0.05" and 2 jars labelled "SB6/0.15".

I have attached images of all four jars. Can you please confirm which jars belong to which sample ID?

Thank you, Lucy

Kind Regards,

Sample Receipt Melbourne | Sample Receipt | Envirolab Services

Great Science. Great Service.

25 Research Drive Croydon South VIC 3136 T 03 9763 2500 E loginvic@envirolab.com.au | W www.envirolab.com.au Contaminated Land • Trade Waste • OHS • Drinking Water • Air Quality • Asbestos • Methamphetamines & Other Drug Residue • Acid Subhate Soi Emerging Contaminants • Forens SERVICES Related Parties AU: 1300 424 344 Sydney | Perth | Melbourne | Adelaide | Brisbane | Darwin

Follow us on: LinkedIn | Facebook | Twitter

Latest Update: Our Melbourne lab's NATA accredited for EDTA in soil and water matrices & compliant with EPA Victori

Please consider the environment before printing this email.

Samples will be analysed per our T&C's.

The content of this email and any attachments are intended solely for the addressee(s), may contain confidential and/or privileged information and may be use is expressly prohibited. If you have received this email in error please promptly notify the sender, disregard and then delete the email. Any views expressender. This email may have been corrupted or interfered with. Envirolab Group Pty Ltd cannot guarantee that the message you receive is the same as the warrant or guarantee that the communication is free from errors, virus or interference. In the event of any discrepancy between paper and electronic versic Group accepts no liability for any damage caused by this email or its attachments due to viruses, interference, interception, corruption or unauthorised ; resending this email.

This e-mail message has been scanned for Viruses

From: Brad O'Reilly <<u>boreilly@slrconsulting.com</u>> Sent: Thursday, 15 September 2022 11:42 AM To: MelbourneMailbox <<u>Melbourne@envirolab.com.au</u>> Cc: Paul Bay <<u>pbay@slrconsulting.com</u>> Subject: 640.30541.00000 - Sample pickup from SLR Consulting

CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Hi Envirolab team,

Envirolab Services Pty Ltd ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 33613

Client Details	
Client	SLR Consulting Aust. Pty Ltd (VIC)
Attention	Paul Bay
Address	Level 11, 176 Wellington Parade, EAST MELBOURNE, VIC, 3002

Sample Details	
Your Reference	<u>640.30541.00000</u>
Number of Samples	22 Soil
Date samples received	15/09/2022
Date completed instructions received	15/09/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details						
Date results requested by	26/09/2022					
Date of Issue	26/09/2022					
NATA Accreditation Number 2901. This document shall not be reproduced except in full.						
Accredited for compliance with I	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *					

Results Approved By Chaminda Gunasekara, Inorganics Supervisor Tara White, Metals Team Leader Tianna Milburn, Chemist

Authorised By

Pamela Adams, Laboratory Manager

VOCs in soil		
Our Reference		33613-3
Your Reference	UNITS	SB2/0.05
Date Sampled		14/09/2022
Type of sample		Soil
Date extracted	-	17/09/2022
Date analysed	-	17/09/2022
Vinyl Chloride	mg/kg	<0.1
1,1-Dichloroethene	mg/kg	<0.1
methylene chloride	mg/kg	<0.5
trans-1,2-dichloroethene	mg/kg	<0.1
cis-1,2-dichloroethene	mg/kg	<0.1
chloroform	mg/kg	<0.1
1,1,1-trichloroethane	mg/kg	<0.1
carbon tetrachloride	mg/kg	<0.1
Benzene	mg/kg	<0.1
1,2-dichloroethane	mg/kg	<0.1
trichloroethene	mg/kg	<0.1
Toluene	mg/kg	<0.1
1,1,2-trichloroethane	mg/kg	<0.1
tetrachloroethene	mg/kg	<0.1
chlorobenzene	mg/kg	<0.1
Ethylbenzene	mg/kg	<0.1
1,1,1,2-tetrachloroethane	mg/kg	<0.1
m+p-xylene	mg/kg	<0.2
o-Xylene	mg/kg	<0.1
styrene	mg/kg	<0.1
1,1,2,2-tetrachloroethane	mg/kg	<0.1
1,4-dichlorobenzene	mg/kg	<0.1
1,2-dichlorobenzene	mg/kg	<0.1
1,2,4-trichlorobenzene	mg/kg	<0.1
hexachlorobutadiene	mg/kg	<0.1
Total +ve MAHs	mg/kg	<7
Total +ve Chlorinated Hydrocarbons	mg/kg	<0.1
Total +ve Other Chlorinated Hydrocarbons	mg/kg	<0.1
Surrogate aaa-Trifluorotoluene	%	90
Surrogate Dibromofluoromethane	%	99
<i>Surrogate</i> Toluene-d₃	%	100
Surrogate 4-Bromofluorobenzene	%	101

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		33613-3
Your Reference	UNITS	SB2/0.05
Date Sampled		14/09/2022
Type of sample		Soil
Date extracted	-	17/09/2022
Date analysed	-	17/09/2022
vTRH C ₆ - C ₉	mg/kg	<25
vTRH C ₆ - C ₁₀	mg/kg	<25
TRH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
Naphthalene	mg/kg	<1
Total BTEX	mg/kg	<1
Total +ve Xylenes	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	95

TRH Soil C10-C40 NEPM		
Our Reference		33613-3
Your Reference	UNITS	SB2/0.05
	UNITS	
Date Sampled		14/09/2022
Type of sample		Soil
Date extracted	-	17/09/2022
Date analysed	-	18/09/2022
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
Total +ve TRH (C10-C36)	mg/kg	<50
TRH >C10 -C16	mg/kg	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	78

PAHs in Soil						
Our Reference		33613-1	33613-3	33613-4	33613-5	33613-8
Your Reference	UNITS	SB1/0.05	SB2/0.05	SB2/0.15	SB3/0.05	SB4/0.15
Date Sampled		14/09/2022	14/09/2022	14/09/2022	14/09/2022	14/09/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	17/09/2022	17/09/2022	17/09/2022	17/09/2022	17/09/2022
Date analysed	-	17/09/2022	17/09/2022	17/09/2022	17/09/2022	17/09/2022
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j&k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (Zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc (Half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc (PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d ₁₄	%	108	116	108	112	110

PAHs in Soil						
Our Reference		33613-9	33613-11	33613-13	33613-14	33613-15
Your Reference	UNITS	SB5/0.05	SB6/0.05	SB7/0.05	SB7/0.15	SB8/0.05
Date Sampled		14/09/2022	14/09/2022	14/09/2022	14/09/2022	14/09/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	17/09/2022	17/09/2022	17/09/2022	17/09/2022	17/09/2022
Date analysed	-	17/09/2022	17/09/2022	17/09/2022	17/09/2022	17/09/2022
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j&k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (Zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc (Half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc (PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d ₁₄	%	110	110	110	108	108

PAHs in Soil				
Our Reference		33613-18	33613-19	33613-21
Your Reference	UNITS	SB9/0.15	SB10/0.05	QC01_140922
Date Sampled		14/09/2022	14/09/2022	14/09/2022
Type of sample		Soil	Soil	Soil
Date extracted	-	17/09/2022	17/09/2022	17/09/2022
Date analysed	-	17/09/2022	17/09/2022	17/09/2022
Naphthalene	mg/kg	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1
Benzo(b,j&k)fluoranthene	mg/kg	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (Zero)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc (Half)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc (PQL)	mg/kg	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d ₁₄	%	110	110	110

Speciated Phenols in Soil		
Our Reference		33613-3
Your Reference	UNITS	SB2/0.05
Date Sampled		14/09/2022
Type of sample		Soil
Date extracted	-	17/09/2022
Date analysed	-	17/09/2022
Phenol	mg/kg	<0.2
2-Chlorophenol	mg/kg	<0.2
2-Methylphenol	mg/kg	<0.2
3/4-Methylphenol	mg/kg	<0.4
2-Nitrophenol	mg/kg	<0.2
2,4-Dimethylphenol	mg/kg	<0.2
2,4-Dichlorophenol	mg/kg	<0.05
2,6-Dichlorophenol	mg/kg	<0.05
2,4,5-Trichlorophenol	mg/kg	<0.05
2,4,6-Trichlorophenol	mg/kg	<0.05
2,4-Dinitrophenol	mg/kg	<4
4-Nitrophenol	mg/kg	<4
2,3,4,6-Tetrachlorophenol	mg/kg	<0.1
2-Methyl-4,6-Dinitrophenol	mg/kg	<2
Pentachlorophenol	mg/kg	<0.1
4-Chloro-3-Methylphenol	mg/kg	<0.2
2,3,4,5-Tetrachlorophenol	mg/kg	<0.1
2,3,5,6-Tetrachlorophenol	mg/kg	<0.1
2-Cyclohexyl-4,6-Dinitrophenol	mg/kg	<20
Dinoseb	mg/kg	<5
Total +ve Phenols Halogenated	mg/kg	<1
Total +ve Phenols non-Halogenated	mg/kg	<50
Surrogate Phenol-d ₆	%	84
Surrogate 2-fluorophenol	%	86

Organochlorine Pesticides in soil		
Our Reference		33613-3
Your Reference	UNITS	SB2/0.05
Date Sampled		14/09/2022
Type of sample		Soil
Date extracted	-	17/09/2022
Date analysed	-	17/09/2022
alpha-BHC	mg/kg	<0.1
Hexachlorobenzene	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Total +ve Organochlorine Pesticides	mg/kg	<0.1
Total +ve report other OC	mg/kg	<0.1
Tot +ve report Chlordane	mg/kg	<0.1
Total +ve reported Aldrin + Dieldrin	mg/kg	<0.1
Total +ve reported DDT+DDD+DDE	mg/kg	<0.1
Surrogate 2-chlorophenol-d4	%	88

PCBs in Soil		
Our Reference		33613-3
Your Reference	UNITS	SB2/0.05
Date Sampled		14/09/2022
Type of sample		Soil
Date extracted	-	17/09/2022
Date analysed	-	17/09/2022
Aroclor 1016	mg/kg	<0.1
Aroclor 1221	mg/kg	<0.1
Aroclor 1232	mg/kg	<0.1
Aroclor 1242	mg/kg	<0.1
Aroclor 1248	mg/kg	<0.1
Aroclor 1254	mg/kg	<0.1
Aroclor 1260	mg/kg	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1
Surrogate 2-fluorobiphenyl	%	92

Your Reference UNITS SB1/0.05 SB2/0.05 SB2/0.15 SB3/0.05 SB	
	3613-8
Date Sampled 14/09/2022 14/09/2022 14/09/2022 14/09/2022 14/09/2022	34/0.15
	09/2022
Type of sample Soil Soil Soil	Soil
Date digested - 17/09/2022 17/09/2022 17/09/2022 17/09/2022 17/09/2022	09/2022
Date analysed - 19/09/2022 <td>09/2022</td>	09/2022
Arsenic mg/kg <4 5 13 5	8
Cadmium mg/kg <0.4 <0.4 <0.4 <0.4	<0.4
Chromium mg/kg 8 10 14 13	14
Copper mg/kg 4 6 9 10	8
Lead mg/kg 7 9 18 10	13
Mercury mg/kg <0.1 <0.1 <0.1 <0.1	<0.1
Molybdenum mg/kg <1 <1 <1 <1	<1
Nickel mg/kg 5 6 8 8	7
Tin mg/kg <1 <1 <1	<1
Selenium mg/kg <2 <2 <2 <2	<2
Silver mg/kg <1 <1 <1	<1
Zinc mg/kg 18 25 23 43	20
Metals in soil	
Our Reference 33613-9 33613-11 33613-13 33613-14 33	613-15
Your Reference UNITS SB5/0.05 SB6/0.05 SB7/0.05 SB7/0.15 SB7/0.15	38/0.05
Date Sampled 14/09/2022 14/09/2022 14/09/2022 14/09/2022 14/09/2022	09/2022
Type of sample Soil Soil Soil	Soil
Date digested - 17/09/2022 17/09/2022 17/09/2022 17/09/2022 17/09/2022	09/2022
	09/2022 09/2022
Date analysed - 19/09/2022 <td>09/2022</td>	09/2022
Date analysed - 19/09/2022 <td>09/2022 4</td>	09/2022 4
Date analysed - 19/09/2022 <td>09/2022 4 <0.4</td>	09/2022 4 <0.4
Date analysed - 19/09/2022 <td>09/2022 4 <0.4 14</td>	09/2022 4 <0.4 14
Date analysed - 19/09/2022 <td>09/2022 4 <0.4 14 11</td>	09/2022 4 <0.4 14 11
Date analysed - 19/09/2022 <td>09/2022 4 <0.4 14 11 11</td>	09/2022 4 <0.4 14 11 11
Date analysed - 19/09/2022 19/02/202 19/02/202 19/02/202	09/2022 4 <0.4 14 11 11 <0.1
Date analysed - 19/09/2022 19/0 19/09/2022 19/09/2022 19/09/2022 19/09/2022 19/09/2022 19/09/2022 19/09/2022 19/09/2022 19/09/2022 19/09/2022 19/09/2022 19/09/2022 19/09/2022 19/09/2022 19/09/2022 19/02/202 19/02/202 19/02/202	09/2022 4 <0.4 14 11 11 <0.1 <1
Date analysed - 19/09/2022 19/02/202 19/02/202 19/02/202 19/02/202 19/02/202 19/02/202 19/02/202 19/02/202	09/2022 4 <0.4 14 11 11 <0.1 <1 7
Date analysed - 19/09/2022 19/09/2023 19/09/2023 19/09/2023 19/09/2023 19/09/2023 19/09/2023 19/09/2023 19/09/2023 19/09/2023 19/09/2023 19/09/2023 19/09/2023 19/09/2023 19/03/20 19/03/20 19/03/20	09/2022 4 <0.4 14 11 11 <0.1 <1 7 <1

Metals in soil				
Our Reference		33613-18	33613-19	33613-21
Your Reference	UNITS	SB9/0.15	SB10/0.05	QC01_140922
Date Sampled		14/09/2022	14/09/2022	14/09/2022
Type of sample		Soil	Soil	Soil
Date digested	-	17/09/2022	17/09/2022	17/09/2022
Date analysed	-	19/09/2022	19/09/2022	19/09/2022
Arsenic	mg/kg	6	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4
Chromium	mg/kg	12	12	11
Copper	mg/kg	7	15	10
Lead	mg/kg	12	11	10
Mercury	mg/kg	<0.1	<0.1	<0.1
Molybdenum	mg/kg	<1	<1	1
Nickel	mg/kg	7	7	7
Tin	mg/kg	<1	<1	<1
Selenium	mg/kg	<2	<2	<2
Silver	mg/kg	<1	<1	<1
Zinc	mg/kg	21	59	31
Miscellaneous Inorg - soil				
---------------------------------------	----------	------------		
Our Reference		33613-3		
Your Reference	UNITS	SB2/0.05		
Date Sampled		14/09/2022		
Type of sample		Soil		
Date prepared	-	17/09/2022		
Date analysed	-	19/09/2022		
Total Cyanide	mg/kg	<0.5		
Hexavalent Chromium, Cr ⁶⁺	mg/kg	<1		
Total Fluoride	mg/kg	60		
pH 1:5 soil:water	pH Units	5.3		

Moisture						
Our Reference		33613-1	33613-3	33613-4	33613-5	33613-8
Your Reference	UNITS	SB1/0.05	SB2/0.05	SB2/0.15	SB3/0.05	SB4/0.15
Date Sampled		14/09/2022	14/09/2022	14/09/2022	14/09/2022	14/09/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	17/09/2022	17/09/2022	17/09/2022	17/09/2022	17/09/2022
Date analysed	-	19/09/2022	19/09/2022	19/09/2022	19/09/2022	19/09/2022
Moisture	%	17	26	15	29	14
Moisture			1			
Our Reference		33613-9	33613-11	33613-13	33613-14	33613-15
Your Reference	UNITS	SB5/0.05	SB6/0.05	SB7/0.05	SB7/0.15	SB8/0.05
Date Sampled		14/09/2022	14/09/2022	14/09/2022	14/09/2022	14/09/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	17/09/2022	17/09/2022	17/09/2022	17/09/2022	17/09/2022
Date analysed	-	19/09/2022	19/09/2022	19/09/2022	19/09/2022	19/09/2022
Moisture	%	33	26	38	18	37
Moisture						
Our Reference		33613-18	33613-19	33613-21		
Your Reference	UNITS	SB9/0.15	SB10/0.05	QC01_140922		
Date Sampled		14/09/2022	14/09/2022	14/09/2022		
Type of sample		Soil	Soil	Soil		

17/09/2022

19/09/2022

16

-

-

%

17/09/2022

19/09/2022

35

17/09/2022

19/09/2022

33

Date prepared

Date analysed

Moisture

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only as analysis outside of the APHA storage times.
Inorg-008	Moisture content determined by heating at 105°C for a minimum of 12 hours.
Inorg-014	Cyanide - free, total, weak acid dissociable by segmented flow analyser (in line dialysis with colourimetric finish).
	Solids/Filters and sorbents are extracted in a caustic media prior to analysis. Impingers are pH adjusted as required prior to analysis.
	Cyanides amenable to Chlorination - samples are analysed untreated and treated with hypochlorite to assess the potential for chlorination of cyanide forms. Based on APHA latest edition, 4500-CN_G,H.
	Please note:- i) The amenable to Chlorination test is only carried out for solids where the Total Cyanide result is >50mg/kg. The Category D/industrial waste upper limit for Total Concentrations of Cyanide (amenable) is 300mg/kg (Table 2, VIC EPA 1828.2 March 2021), the lower limit used (250mg/kg) is to accommodate analytical uncertainty.
	ii) The amenable to Chlorination test is only carried out for leachates where the Total Cyanide result is >1mg/L. The Category D/industrial waste upper limit for Leachable Concentrations of Cyanide (amenable) is 1.75mg/L (Table 2, VIC EPA 1828.2 March 2021), the lower limit used (1mg/L) is to accommodate analytical uncertainty
Inorg-026/53	Fluoride by caustic fusion and determined by ion selective electrode (ISE) analysis.
INORG-118	Hexavalent Chromium by Ion Chromatographic separation and colourimetric determination.
Metals-020 ICP-AES	Determination of various metals by ICP-AES.
Metals-021 CV-AAS	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).

Method ID	Methodology Summary
Org-021/022	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD or GC-MS.
	Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Org-022	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
	Note, For OCs the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Note, the Total +ve Cresols or Phenols PQL is reflective of the lowest individual PQL and is therefore" Total +ve Cresols or Phenols" is simply a sum of the positive individual Cresols or Phenols.
Org-022	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
	For soil results:-
	 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 'EQ half PQL'values are assuming all contributing PAHs reported as <pql +ve="" a="" above.="" and="" approaches="" are="" between="" conservative="" half="" hence="" individual="" is="" least="" li="" lowest="" mid-point="" most="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql.="" reflective="" simply="" stipulated="" sum="" the="" therefore"="" total=""> </pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALI	TY CONTRC	L: VOCs	in soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date extracted	-			17/09/2022	[NT]		[NT]	[NT]	17/09/2022		
Date analysed	-			17/09/2022	[NT]		[NT]	[NT]	17/09/2022		
Vinyl Chloride	mg/kg	0.1	Org-023	<0.1	[NT]		[NT]	[NT]	[NT]		
1,1-Dichloroethene	mg/kg	0.1	Org-023	<0.1	[NT]		[NT]	[NT]	[NT]		
methylene chloride	mg/kg	0.5	Org-023	<0.5	[NT]		[NT]	[NT]	[NT]		
trans-1,2-dichloroethene	mg/kg	0.1	Org-023	<0.1	[NT]		[NT]	[NT]	[NT]		
cis-1,2-dichloroethene	mg/kg	0.1	Org-023	<0.1	[NT]		[NT]	[NT]	[NT]		
chloroform	mg/kg	0.1	Org-023	<0.1	[NT]		[NT]	[NT]	104		
1,1,1-trichloroethane	mg/kg	0.1	Org-023	<0.1	[NT]		[NT]	[NT]	99		
carbon tetrachloride	mg/kg	0.1	Org-023	<0.1	[NT]		[NT]	[NT]	[NT]		
Benzene	mg/kg	0.1	Org-023	<0.1	[NT]		[NT]	[NT]	[NT]		
1,2-dichloroethane	mg/kg	0.1	Org-023	<0.1	[NT]		[NT]	[NT]	105		
trichloroethene	mg/kg	0.1	Org-023	<0.1	[NT]		[NT]	[NT]	94		
Toluene	mg/kg	0.1	Org-023	<0.1	[NT]		[NT]	[NT]	[NT]		
1,1,2-trichloroethane	mg/kg	0.1	Org-023	<0.1	[NT]		[NT]	[NT]	[NT]		
tetrachloroethene	mg/kg	0.1	Org-023	<0.1	[NT]		[NT]	[NT]	92		
chlorobenzene	mg/kg	0.1	Org-023	<0.1	[NT]		[NT]	[NT]	[NT]		
Ethylbenzene	mg/kg	0.1	Org-023	<0.1	[NT]		[NT]	[NT]	[NT]		
1,1,1,2-tetrachloroethane	mg/kg	0.1	Org-023	<0.1	[NT]		[NT]	[NT]	[NT]		
m+p-xylene	mg/kg	0.2	Org-023	<0.2	[NT]		[NT]	[NT]	[NT]		
o-Xylene	mg/kg	0.1	Org-023	<0.1	[NT]		[NT]	[NT]	[NT]		
styrene	mg/kg	0.1	Org-023	<0.1	[NT]		[NT]	[NT]	[NT]		
1,1,2,2-tetrachloroethane	mg/kg	0.1	Org-023	<0.1	[NT]		[NT]	[NT]	[NT]		
1,4-dichlorobenzene	mg/kg	0.1	Org-023	<0.1	[NT]		[NT]	[NT]	[NT]		
1,2-dichlorobenzene	mg/kg	0.1	Org-023	<0.1	[NT]		[NT]	[NT]	[NT]		
1,2,4-trichlorobenzene	mg/kg	0.1	Org-023	<0.1	[NT]		[NT]	[NT]	[NT]		
hexachlorobutadiene	mg/kg	0.1	Org-023	<0.1	[NT]		[NT]	[NT]	[NT]		
Surrogate aaa-Trifluorotoluene	%		Org-023	107	[NT]		[NT]	[NT]	103		
Surrogate Dibromofluoromethane	%		Org-023	100	[NT]		[NT]	[NT]	98		
Surrogate Toluene-d ₈	%		Org-023	99	[NT]		[NT]	[NT]	98		
Surrogate 4-Bromofluorobenzene	%		Org-023	102	[NT]		[NT]	[NT]	99		

QUALITY CON	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			17/09/2022	[NT]		[NT]	[NT]	17/09/2022	
Date analysed	-			17/09/2022	[NT]		[NT]	[NT]	17/09/2022	
vTRH C ₆ - C ₉	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	106	
vTRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	106	
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]		[NT]	[NT]	105	
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]		[NT]	[NT]	109	
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	106	
m+p-xylene	mg/kg	2	Org-023	<2	[NT]		[NT]	[NT]	104	
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	104	
Naphthalene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	113	[NT]		[NT]	[NT]	109	

QUALITY CO	NTROL: TRH	I Soil C10	-C40 NEPM			Du	Duplicate Base Dup. RPD [NT] [NT] [NT] [NT] [NT] [NT] [NT] [NT] [NT] [NT] [NT] [NT] [NT] [NT] [NT]			covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			17/09/2022	[NT]		[NT]	[NT]	17/09/2022	
Date analysed	-			17/09/2022	[NT]		[NT]	[NT]	17/09/2022	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	80	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	83	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	85	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	80	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	83	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	85	
Surrogate o-Terphenyl	%		Org-020	77	[NT]		[NT]	[NT]	71	

QUALI	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	33613-15
Date extracted	-			17/09/2022	14	17/09/2022	17/09/2022		17/09/2022	17/09/2022
Date analysed	-			17/09/2022	14	17/09/2022	17/09/2022		17/09/2022	17/09/2022
Naphthalene	mg/kg	0.1	Org-022	<0.1	14	<0.1	<0.1	0	94	101
Acenaphthylene	mg/kg	0.1	Org-022	<0.1	14	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022	<0.1	14	<0.1	<0.1	0	100	108
Fluorene	mg/kg	0.1	Org-022	<0.1	14	<0.1	<0.1	0	100	108
Phenanthrene	mg/kg	0.1	Org-022	<0.1	14	<0.1	<0.1	0	104	112
Anthracene	mg/kg	0.1	Org-022	<0.1	14	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022	<0.1	14	<0.1	<0.1	0	110	118
Pyrene	mg/kg	0.1	Org-022	<0.1	14	<0.1	<0.1	0	110	120
Benzo(a)anthracene	mg/kg	0.1	Org-022	<0.1	14	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022	<0.1	14	<0.1	<0.1	0	94	101
Benzo(b,j&k)fluoranthene	mg/kg	0.2	Org-022	<0.2	14	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022	<0.05	14	<0.05	<0.05	0	110	114
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022	<0.1	14	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022	<0.1	14	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022	<0.1	14	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d ₁₄	%		Org-022	112	14	108	108	0	108	108

QUALITY CO	ONTROL: Spe	ciated Pr	nenols in Soil			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			17/09/2022	[NT]		[NT]	[NT]	17/09/2022	
Date analysed	-			17/09/2022	[NT]		[NT]	[NT]	17/09/2022	
Phenol	mg/kg	0.2	Org-022	<0.2	[NT]		[NT]	[NT]	96	
2-Chlorophenol	mg/kg	0.2	Org-022	<0.2	[NT]		[NT]	[NT]	90	
2-Methylphenol	mg/kg	0.2	Org-022	<0.2	[NT]		[NT]	[NT]	88	
3/4-Methylphenol	mg/kg	0.4	Org-022	<0.4	[NT]		[NT]	[NT]	[NT]	
2-Nitrophenol	mg/kg	0.2	Org-022	<0.2	[NT]		[NT]	[NT]	[NT]	
2,4-Dimethylphenol	mg/kg	0.2	Org-022	<0.2	[NT]		[NT]	[NT]	[NT]	
2,4-Dichlorophenol	mg/kg	0.05	Org-022	<0.05	[NT]		[NT]	[NT]	[NT]	
2,6-Dichlorophenol	mg/kg	0.05	Org-022	<0.05	[NT]		[NT]	[NT]	92	
2,4,5-Trichlorophenol	mg/kg	0.05	Org-022	<0.05	[NT]		[NT]	[NT]	[NT]	
2,4,6-Trichlorophenol	mg/kg	0.05	Org-022	<0.05	[NT]		[NT]	[NT]	[NT]	
2,4-Dinitrophenol	mg/kg	4	Org-022	<4	[NT]		[NT]	[NT]	[NT]	
4-Nitrophenol	mg/kg	4	Org-022	<4	[NT]		[NT]	[NT]	[NT]	
2,3,4,6-Tetrachlorophenol	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
2-Methyl-4,6-Dinitrophenol	mg/kg	2	Org-022	<2	[NT]		[NT]	[NT]	[NT]	
Pentachlorophenol	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	96	
4-Chloro-3-Methylphenol	mg/kg	0.2	Org-022	<0.2	[NT]		[NT]	[NT]	[NT]	
2,3,4,5-Tetrachlorophenol	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
2,3,5,6-Tetrachlorophenol	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
2-Cyclohexyl-4,6-Dinitrophenol	mg/kg	20	Org-022	<20	[NT]		[NT]	[NT]	[NT]	
Dinoseb	mg/kg	5	Org-022	<5	[NT]		[NT]	[NT]	[NT]	
Surrogate Phenol-d ₆	%		Org-022	86	[NT]		[NT]	[NT]	86	
Surrogate 2-fluorophenol	%		Org-022	86	[NT]		[NT]	[NT]	86	

QUALITY CON	TROL: Organc	chlorine F	Pesticides in soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date extracted	-			17/09/2022	[NT]		[NT]	[NT]	17/09/2022		
Date analysed	-			17/09/2022	[NT]		[NT]	[NT]	17/09/2022		
alpha-BHC	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	94		
Hexachlorobenzene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
beta-BHC	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	92		
gamma-BHC	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
Heptachlor	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	96		
delta-BHC	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
Aldrin	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	102		
Heptachlor Epoxide	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	104		
gamma-Chlordane	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	100		
alpha-chlordane	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
Endosulfan I	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
pp-DDE	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	106		
Dieldrin	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	110		
Endrin	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
Endosulfan II	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
pp-DDD	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	138		
Endrin Aldehyde	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
pp-DDT	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
Endosulfan Sulphate	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	104		
Methoxychlor	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
Surrogate 2-chlorophenol-d4	%		Org-022	88	[NT]		[NT]	[NT]	88		

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			17/09/2022	[NT]		[NT]	[NT]	17/09/2022	
Date analysed	-			17/09/2022	[NT]		[NT]	[NT]	17/09/2022	
Aroclor 1016	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1221	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1232	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1242	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1248	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1254	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	110	
Aroclor 1260	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate 2-fluorobiphenyl	%		Org-022	94	[NT]		[NT]	[NT]	94	

QUALIT	Y CONTRO	L: Metals	in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	33613-19
Date digested	-			17/09/2022	1	17/09/2022	17/09/2022		17/09/2022	17/09/2022
Date analysed	-			19/09/2022	1	19/09/2022	19/09/2022		19/09/2022	19/09/2022
Arsenic	mg/kg	4	Metals-020 ICP- AES	<4	1	<4	6	40	103	111
Cadmium	mg/kg	0.4	Metals-020 ICP- AES	<0.4	1	<0.4	<0.4	0	104	105
Chromium	mg/kg	1	Metals-020 ICP- AES	<1	1	8	14	55	104	108
Copper	mg/kg	1	Metals-020 ICP- AES	<1	1	4	6	40	104	107
Lead	mg/kg	1	Metals-020 ICP- AES	<1	1	7	11	44	107	107
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	1	<0.1	<0.1	0	102	95
Molybdenum	mg/kg	1	Metals-020 ICP- AES	<1	1	<1	<1	0	104	102
Nickel	mg/kg	1	Metals-020 ICP- AES	<1	1	5	7	33	104	104
Tin	mg/kg	1	Metals-020 ICP- AES	<1	1	<1	<1	0	101	99
Selenium	mg/kg	2	Metals-020 ICP- AES	<2	1	<2	<2	0	100	109
Silver	mg/kg	1	Metals-020 ICP- AES	<1	1	<1	<1	0	105	112
Zinc	mg/kg	1	Metals-020 ICP- AES	<1	1	18	23	24	104	101

QUALIT	QUALITY CONTROL: Metals in soil								Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]		
Date digested	-				18	17/09/2022	17/09/2022			[NT]		
Date analysed	-				18	19/09/2022	19/09/2022			[NT]		
Arsenic	mg/kg	4	Metals-020 ICP- AES		18	6	5	18		[NT]		
Cadmium	mg/kg	0.4	Metals-020 ICP- AES		18	<0.4	<0.4	0		[NT]		
Chromium	mg/kg	1	Metals-020 ICP- AES		18	12	11	9		[NT]		
Copper	mg/kg	1	Metals-020 ICP- AES		18	7	7	0		[NT]		
Lead	mg/kg	1	Metals-020 ICP- AES		18	12	11	9		[NT]		
Mercury	mg/kg	0.1	Metals-021 CV-AAS		18	<0.1	<0.1	0		[NT]		
Molybdenum	mg/kg	1	Metals-020 ICP- AES		18	<1	<1	0		[NT]		
Nickel	mg/kg	1	Metals-020 ICP- AES		18	7	7	0		[NT]		
Tin	mg/kg	1	Metals-020 ICP- AES		18	<1	<1	0		[NT]		
Selenium	mg/kg	2	Metals-020 ICP- AES		18	<2	<2	0		[NT]		
Silver	mg/kg	1	Metals-020 ICP- AES		18	<1	<1	0		[NT]		
Zinc	mg/kg	1	Metals-020 ICP- AES		18	21	22	5		[NT]		

QUALITY CO	QUALITY CONTROL: Miscellaneous Inorg - soil								Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date prepared	-			17/09/2022	[NT]			[NT]	17/09/2022	[NT]	
Date analysed	-			19/09/2022	[NT]			[NT]	19/09/2022	[NT]	
Total Cyanide	mg/kg	0.5	Inorg-014	<0.5	[NT]			[NT]	103	[NT]	
Hexavalent Chromium, Cr6+	mg/kg	1	INORG-118	<1	[NT]			[NT]	85	[NT]	
Total Fluoride	mg/kg	50	Inorg-026/53	<50	[NT]			[NT]	78	[NT]	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]	[NT]	[NT]	[NT]	98	[NT]	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

METALS: The RPD for duplicate results 33613-1 for Chromium is accepted due to the inhomogeneous nature of the sample/s. Triplicate analysis confirms this and is available upon request.

CHAIN OF CUSTODY DOCUME SLR Consulting Australia Pty Ltd ABN 29 001 584 612 CLIENT: EVILYAN PROJECT: Albung HOSPital PROJECT NUMBER: GUO. 306 MIL PROJECT MANAGER: JANGY BYACK PROJECT BYACK PROJ	0000 en 8 51]	Envol	PROJECT Babbas OFFICE CAUSERN (Tick one) DARWIN: ACI 360 (Tick one) DARWIN: ACI 360 (Tick one) CAUSERN LABOR LABOR SAMPL SAMPL Email F	At GPD 694 450. ATORY: ATORY: ATORY A .ER: LER CONT Reports a	Canberra Wash	BLANE LALL DEWAR BALE SACEDOWNE VIE AND MC SCA MONTEN	AV. PERTISAN AV. PERTISAN AV. PERTISAN ARIAN RACKHAM RACKHAM RACKHAM RACKHAM RACKHAM RACKHAM RACKHAM RACKHAM RACKHAM	NEAROYSICOLE POTR. WA	- CONVICUE: 23 CC TOWNSVILLE: 23 CC Townsville QLD 483 AUCKLAND: E8 Osci N2	10 h Read, Auchand 10:0 Turnarour (TA) Standar	T) COC Number T) COC Number T) d TAT
No. Sample ID	Date & Time	Vlatrix nor.ACH, etc	Containers and Prese	rvatives	EA.						
9C02-14092022	14/9/22 5	oil	ice		×					X	
gc04-14092022	14/9/2 5	oil	ice		1111 - 11111 - 11111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 -					~	
+ 923950					6 						
13(09/22						\$					40 405
											16.4 (on- to-2 Ti 16.9
Sample Container Codes: P = Uspreuerves Harris; N = Nitric Preserves Airfreight Unpreserved Vial SG = Sulfurite Preserved Amber Glass; H =		cdium (frotowau/i acclation bottle; SP	Se Preservini , 5 = Sodium Hydroxid P = Sulluric Preserved Plastic; F = Fe	de Prescrved ormalschyde	Plastic; AG = Arebes Ga Preserved Glass; 2 = Zi	sa Unipresented; AP - A ne Acetate Preserved B	rireight Unpreserved Pla httle; E = EDTA Preserved	istic V = VOA Vij81413 Pr Bottles; ST = Starile Bo	eserved; VB = VOA Vial Sod httle; ASS = Plastic Bag for A	lum Bruighate Prese Leid Sulphate Solls; 8	A set in the Marked Brancowidd Alf a
Airregit Unpresent with 3d Sandhart Preserved Bottles G = unpresent Bottles C = unpresent fattest that the proper field sampling procedures were Relinguished By Samaler Sign			Date / Time 14-0		Barel		ini,		Date / T	ime	Temperature Received:
Relinquished By	6		Date / Time 15	2120			iign 10		Date / 7	1311	14
Retinguished By Sig. HP	613 Melb		Date / Time 59	22	Recei	red by	iler.		Date / s		

SLR Consulting (Vic) Suite 2, Grd Flr, 2 Domville Ave Hawthorn VIC 3122

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention:

James Bracken

Report Project name Project ID Received Date 923950-S ALBURY HOSPITAL 640.30541.00000 Sep 15, 2022

Client Sample ID			QC02_1409202
Sample Matrix			Soil
Eurofins Sample No.			M22- Se0034351
Date Sampled			Sep 14, 2022
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons			
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2
Acenaphthene	0.5	mg/kg	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5
Anthracene	0.5	mg/kg	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5
Chrysene	0.5	mg/kg	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5
Fluorene	0.5	mg/kg	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5
Naphthalene	0.5	mg/kg	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5
Pyrene	0.5	mg/kg	< 0.5
Total PAH*	0.5	mg/kg	< 0.5
2-Fluorobiphenyl (surr.)	1	%	124
p-Terphenyl-d14 (surr.)	1	%	97
Heavy Metals			
Antimony	10	mg/kg	< 10
Arsenic	2	mg/kg	2.9
Barium	10	mg/kg	69
Beryllium	2	mg/kg	< 2
Boron	10	mg/kg	< 10
Cadmium	0.4	mg/kg	< 0.4
Chromium	5	mg/kg	12
Copper	5	mg/kg	11
Lead	5	mg/kg	11
Mercury	0.1	mg/kg	< 0.1
Molybdenum	5	mg/kg	< 5

Date Reported: Sep 20, 2022

Client Sample ID			QC02_1409202 2
Sample Matrix			Soil
Eurofins Sample No.			M22- Se0034351
Date Sampled			Sep 14, 2022
Test/Reference	LOR	Unit	
Heavy Metals			
Nickel	5	mg/kg	7.2
Selenium	2	mg/kg	< 2
Silver	2	mg/kg	< 2
Tin	10	mg/kg	< 10
Zinc	5	mg/kg	33
% Moisture	1	%	33

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Polycyclic Aromatic Hydrocarbons	Melbourne	Sep 16, 2022	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals Vic EPA 1828.2 (excluding TBT)	Melbourne	Sep 16, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Melbourne	Sep 15, 2022	14 Days
- Method: LTM-GEN-7080 Moisture			

	Eurofins Environment Testing Australia Pty L ABN: 50 005 085 521 Melbourne Geelong Syd										Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environment Testing NZ Ltd NZBN: 9429046024954		
web: w	ww.eurofins.com.au		6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 500		alan Street 179 Ma Girrawa NSW 2 8564 5000 Tel: +6	Girraween Mitchell Murarrie NSW 2145 ACT 2911 QLD 4172 Tel: +61 2 9900 8400 Tel: +61 2 6113 8091 Tel: +61 7 390.			reet 1/21 Smallwood Place 4/52 Indu Murarrie Mayfield E QLD 4172 PO Box 6	ustrial Drive I East NSW 2304 60 Wickham 2293 2 4968 8448	Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290	
	mpany Name: dress:	SLR Consul Suite 2, Grd Hawthorn VIC 3122	ting (Vic) Flr, 2 Domville	e Ave			R P	order I eport hone: ax:	#:	923950 03 9249 9400		Due: Priority:	Sep 15, 2022 3:40 Sep 26, 2022 5 Day James Bracken	PM
	oject Name: oject ID:	ALBURY H0 640.30541.0									Eu	rofins Analytical Ser	vices Manager : Ha	nrry Bacalis
			ample Detail			HOLD	Polycyclic Aromatic Hydrocarbons	Moisture Set	Metals Vic EPA 1828.2 (excluding TBT)					
	ourne Laborato		261 Site # 125	4		X	X	X	X					
Exte No	rnal Laboratory Sample ID	Sample Date	Sampling	Matrix	LAB ID				$\left - \right $					
	-	-	Time											
1	QC02_140920 22	Sep 14, 2022		Soil	M22-Se003435		x	х	х					
2	QC04_140920 22	Sep 14, 2022		Soil	M22-Se003435	2 x								
Test	Counts	-	· ·		•	1	1	1	1					

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

enits		
mg/kg: milligrams per kilogram	mg/L: milligrams per litre	µg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

Termo	
APHA	American Public Health Association
COC	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
твто	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
 - 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank						
Heavy Metals						
Antimony	mg/kg	< 10		10	Pass	
Arsenic	mg/kg	< 2		2	Pass	
Barium	mg/kg	< 10		10	Pass	
Beryllium	mg/kg	< 2		2	Pass	
Boron	mg/kg	< 10		10	Pass	
Cadmium	mg/kg	< 0.4		0.4	Pass	
Chromium	mg/kg	< 5		5	Pass	
Copper	mg/kg	< 5		5	Pass	
Lead	mg/kg	< 5		5	Pass	
Mercury	mg/kg	< 0.1		0.1	Pass	
Molybdenum	mg/kg	< 5		5	Pass	
Nickel	mg/kg	< 5		5	Pass	
Selenium	mg/kg	< 2		2	Pass	
Silver	mg/kg	< 2		2	Pass	
Tin	mg/kg	< 10		10	Pass	
Zinc	mg/kg	< 5		5	Pass	
LCS - % Recovery				-		
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	%	91		70-130	Pass	
Acenaphthylene	%	88		70-130	Pass	
Anthracene	%	79		70-130	Pass	
Benz(a)anthracene	%	93		70-130	Pass	
Benzo(a)pyrene	%	75		70-130	Pass	
Benzo(b&j)fluoranthene	%	80		70-130	Pass	
Benzo(g.h.i)perylene	%	74		70-130	Pass	
Benzo(k)fluoranthene	%	74		70-130	Pass	
Chrysene	%	91		70-130	Pass	
Dibenz(a.h)anthracene	%	84		70-130	Pass	
Fluoranthene	%	81		70-130	Pass	
Fluorene	%	108		70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	78		70-130	Pass	
Naphthalene	%	90		70-130	Pass	

Test			Units	Result 1		ceptance Limits	Pass Limits	Qualifying Code
Phenanthrene			%	97		70-130	Pass	
Pyrene			%	90		70-130	Pass	
LCS - % Recovery								
Heavy Metals								
Antimony			%	97		80-120	Pass	
Arsenic			%	95		80-120	Pass	
Barium			%	96		80-120	Pass	
Beryllium			%	100		80-120	Pass	
Boron			%	95		80-120	Pass	
Cadmium			%	105		80-120	Pass	
Chromium			%	97		80-120	Pass	
Copper			%	95	8	80-120	Pass	
Lead			%	101		80-120	Pass	
Mercury			%	99		80-120	Pass	
Molybdenum			%	97		80-120	Pass	
Nickel			%	94	8	80-120	Pass	
Selenium			%	95	8	80-120	Pass	
Silver			%	105	8	80-120	Pass	
Tin			%	96		80-120	Pass	
Zinc			%	92	8	80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Aco	ceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Polycyclic Aromatic Hydroca	rbons			Result 1				
Acenaphthene	M22-Se0036915	NCP	%	97		70-130	Pass	
Acenaphthylene	M22-Se0036915	NCP	%	94		70-130	Pass	
Anthracene	M22-Se0036915	NCP	%	88		70-130	Pass	
Benz(a)anthracene	M22-Se0036915	NCP	%	103		70-130	Pass	
Benzo(a)pyrene	M22-Se0036915	NCP	%	80		70-130	Pass	
Benzo(b&j)fluoranthene	M22-Se0036915	NCP	%	98		70-130	Pass	
Benzo(g.h.i)perylene	M22-Se0036915	NCP	%	83		70-130	Pass	
Benzo(k)fluoranthene	M22-Se0036915	NCP	%	96		70-130	Pass	
Chrysene	M22-Se0036915	NCP	%	98		70-130	Pass	
Dibenz(a.h)anthracene	M22-Se0036915	NCP	%	112		70-130	Pass	
Fluoranthene	M22-Se0036915	NCP	%	97		70-130	Pass	
Fluorene	M22-Se0036915	NCP	%	80		70-130	Pass	
Indeno(1.2.3-cd)pyrene	M22-Se0036915	NCP	%	99		70-130	Pass	
Naphthalene	M22-Se0036915	NCP	%	102		70-130	Pass	
Phenanthrene	M22-Se0036915	NCP	%	106		70-130	Pass	
Pyrene	M22-Se0036915	NCP	%	94		70-130	Pass	
Spike - % Recovery								
Heavy Metals				Result 1				
Antimony	B22-Se0035564	NCP	%	108		75-125	Pass	
Arsenic	B22-Se0035564	NCP	%	109		75-125	Pass	
Barium	B22-Se0035564	NCP	%	118		75-125	Pass	
Beryllium	B22-Se0035564	NCP	%	116		75-125	Pass	
Boron	M22-Se0034178	NCP	%	106		75-125	Pass	
Cadmium	M22-Se0034178	NCP	%	81		75-125	Pass	
Chromium	B22-Se0035564	NCP	%	109		75-125	Pass	
Copper	B22-Se0035564	NCP	%	120		75-125	Pass	
Lead	B22-Se0035564	NCP	%	115		75-125	Pass	
Mercury	B22-Se0035564	NCP	%	110		75-125	Pass	
Molybdenum	B22-Se0035564	NCP	%	112		75-125	Pass	
Nickel	B22-Se0035564	NCP	%	108		75-125	Pass	
			70					

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Silver	B22-Se0035564	NCP	%	113			75-125	Pass	
Tin	B22-Se0035564	NCP	%	113			75-125	Pass	
Zinc	B22-Se0035564	NCP	%	125			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Polycyclic Aromatic Hydroca	rbons			Result 1	Result 2	RPD			
Acenaphthene	M22-Se0034588	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	M22-Se0034588	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	M22-Se0034588	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	M22-Se0034588	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	M22-Se0034588	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	M22-Se0034588	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	M22-Se0034588	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	M22-Se0034588	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	M22-Se0034588	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	M22-Se0034588	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	M22-Se0034588	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	M22-Se0034588	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M22-Se0034588	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	M22-Se0034588	NCP	mg/kg	1.3	1.4	7.9	30%	Pass	
Phenanthrene	M22-Se0034588	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	M22-Se0034588	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate			00						
Heavy Metals				Result 1	Result 2	RPD			
Antimony	B22-Se0035563	NCP	mg/kg	< 10	< 10	<1	30%	Pass	
Arsenic	B22-Se0035563	NCP	mg/kg	7.6	7.3	3.6	30%	Pass	
Barium	B22-Se0035563	NCP	mg/kg	390	400	2.7	30%	Pass	
Beryllium	B22-Se0035563	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Boron	B22-Se0035563	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
Cadmium	B22-Se0035563	NCP	mg/kg	1.4	1.5	8.9	30%	Pass	
Chromium	B22-Se0035563	NCP	mg/kg	24	25	2.1	30%	Pass	
Copper	B22-Se0035563	NCP	mg/kg	680	680	<1	30%	Pass	
Lead	B22-Se0035563	NCP	mg/kg	38	40	5.2	30%	Pass	
Mercury	B22-Se0035563	NCP	mg/kg	0.6	0.6	8.0	30%	Pass	
Molybdenum	B22-Se0035563	NCP	mg/kg	9.3	10	9.0	30%	Pass	
Nickel	B22-Se0035563	NCP	mg/kg	27	26	6.0	30%	Pass	
Selenium	B22-Se0035563	NCP	mg/kg	8.5	9.3	9.4	30%	Pass	
Silver	B22-Se0035563	NCP	mg/kg	3.2	3.0	5.6	30%	Pass	
Tin	B22-Se0035563	NCP	mg/kg	58	59	<1	30%	Pass	
Zinc	B22-Se0035563	NCP	mg/kg	1200	1200	1.2	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	M22-Se0034442	NCP	%	15	14	6.1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used) N	√A/
Attempt to Chill was evident Y	/es
Sample correctly preserved Y	/es
Appropriate sample containers have been used Y	/es
Sample containers for volatile analysis received with minimal headspace Y	/es
Samples received within HoldingTime Y	/es
Some samples have been subcontracted N	٥V

Qualifier Codes/Comments

Code

Description

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised by:

Harry Bacalis Emily Rosenberg Joseph Edouard Marv Makarios

Analytical Services Manager Senior Analyst-Metal Senior Analyst-Organic Senior Analyst-Sample Properties

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.